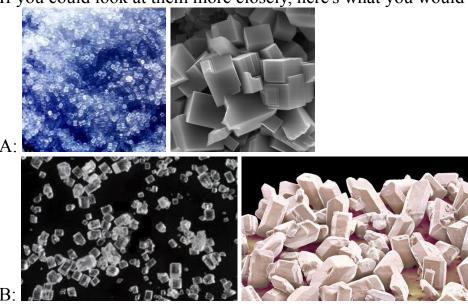
Learning Guide 3A – Salts Chem 1010

Introduction


T 1			. 11		
Look at t	he samnles	in the	two bottles	VOII Were	OIVEN
LOOK at a	iic saiiipics	III tile	two bottles	you were	Z1 V C11.

What observations	can	you	make	about	them?

A:

B:

If you could look at them more closely, here's what you would see.

Now what observations can you make?

A:

B:

Both of these substances are safe to ingest. After tasting them, can you identify them?

A:

B:

Now that you know what they are, can you think of any other ways in which they are similar?

What ways are they different?

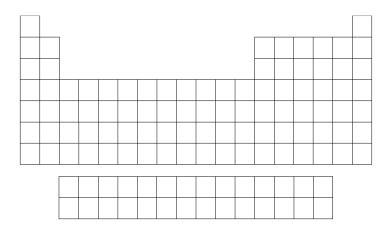
	table salt	table sugar
taste		
melting point		
source		
chemical name		
formula		
type of elements		
type of compound		
molecules or ions		
picture		
	$ \begin{array}{c c} \hline Na^+ & Cl^- & Na^+ & Cl^- & Na^+ & Cl^- \\ \hline Cl^- & Na^+ & Cl^- & Na^+ & Cl^- & Na^+ \\ \hline Na^+ & Cl^- & Na^+ & Cl^- & Na^+ & Cl^- \\ \hline \end{array} $	CH ₂ OH OH H HO OH OH H HO OH H
how atoms are held together		

A bit of review

Since ionic compounds are made of ions, we need to review what we know about ions and chemical bonds.

What is an ion?

Where does the charge come from?


Fill in the following table:

protons	electrons	charge	symbol
8	8		
8	10		
		0	Mg
		+2	Mg ⁺²

What are positive ions called?

What are negative ions called?

Where are the nonmetal atoms? The main group metals? The transition metals?

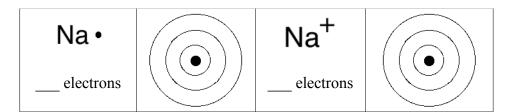
How are electrons organized?

What electrons are involved in forming chemical bonds?

Why do atoms form chemical bonds?

How do nonmetal atoms join to make this happen?

Bonding in NaCl


Can a sodium and a chlorine atom fill the octet by sharing electrons? Why or why not?

Instead, atoms that form ionic compounds ______ electrons.

	Atoms		Io	ns
	Na•	:CI•	Na ⁺	
protons				
electrons				
charge				

How does the chlorine fill the octet rule?

How does sodium fill the octet rule? look at the energy levels

If you take away all the valence electrons, the next level down becomes the highest; it always has 8 electrons.

Why does table salt have the formula NaCl?

Would it be possible to have an ionic compound with the formula Na_2Cl ? What about $NaCl_2$?

Other salts

Notice that every time we have been talking about sodium chloride, we call it "table salt." That's because in chemistry, the word "salt" refers to any ionic compound.

There are several categories of salts that we will discuss. What groups do you see here?

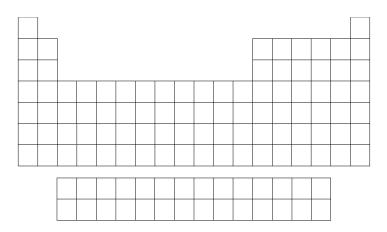
KCl – potassium chloride [white]	K ₂ SO ₄ – potassium sulfate [white]
FeCl ₂ – iron (II) chloride [light green]	FeSO ₄ – iron (II) sulfate [blue-green]
FeCl ₃ – iron (III) chloride [red]	Fe ₂ (SO ₄) ₃ – iron (III) sulfate [yellow]

Which are white?

Which are colored?

Which have one nonmetal?

Which have more than one?


Main group metals, simple ions

Using the Periodic Table, predict what will happen to each of the following atoms when they form ionic compounds:

	valence electrons	lose/gain electrons	symbol
oxygen			
potassium			
nitrogen			
magnesium			
aluminum			
fluorine			

What pattern do you see?

If we look at all of the nonmetals and main group metals on the Periodic Table, we can see what ions they can form.

- noble gases do not form ions
- beryllium, boron, carbon, and silicon do not form ions
- the larger an atom is, the more electrons it can lose

What compounds could you make with the following ions?

C1
O-2

	Cl ⁻	O^{-2}
Na ⁺		
Mg^{+2}		

What would these compour	nds be called?
--------------------------	----------------

•

•

•

•

Why doesn't the name give the number of atoms in the formula?

What names would the following compounds have?

NaBr

ΚI

 CaF_2

BaS

What formulas would the following compounds have?

barium bromide

strontium sulfide

aluminum iodide

lithium oxide

Main group metals, polyatomic ions

Cl-	Simple ions involve only one atom with a charge.
CO ₃ -2	Polyatomic ions involve more than one atom with a charge. How does this work?

So how do you know what charge a polyatomic ion will have?

- 1) work out the line structure, figure out how many electrons are needed
- 2) look at the other ion it is with

MgSO ₄	
KNO ₃	

3) memorize them

you will be responsible to remember: CO₃-2, SO₄-2, NO₃-

What compounds could you make with the following ions?

	SO_4^{-2}
Na ⁺	
Mg ⁺²	

What would	these	compounds	be	called?
------------	-------	-----------	----	---------

- •
- •
- •
- •

Do these names show the number of ions?

What names would the following compounds have?

 $BaSO_{4}$

 $LiNO_3$

SrCO₃

 $Al_2(SO_4)_3$

What formulas would the following compounds have?

potassium nitrate

lithium sulfate

calcium nitrate

tin carbonate

Transition meta	als and simple or polyatomic ions	
What is differen	nt about transition metals and inne	r transition metals?
How are we go	ing to deal with this?	
	dying many different compounds ommonly makes and ion	containing palladium, it has been found s.
What cor	mpounds will palladium form with	oxygen?
	owing two gold compounds have bach compound?	een found. What charges does gold
AuCl		
AuN		
What compound	ds could you make with the follow	ring ions?
	Cl-	O^{-2}
Fe^{+2}		

 Fe^{+3}

How will we name these compounds? What's wrong? Solution: Give the formula for the following compounds. copper (I) oxide copper (II) oxide manganese (II) fluoride manganese (IV) fluoride Give the names of the following compounds. $FeBr_2$ $FeBr_{3} \\$ AgS Ag_2S What will always stay the same?

What compounds could you make with the following ions?

	NO_3^-	SO_4^{-2}
Fe ⁺²		
Fe ⁺³		

What would these compounds be called?

- •
- •
- •
- •

What names would the following compounds have?

HgSO₄

 Hg_2SO_4

 $Co(NO_3)_2$

 $Co(NO_3)_3$

What formulas would the following compounds have?

chromium (III) nitrate

chromium (II) carbonate

nickel (II) nitrate

nickel (III) carbonate