Reaction List - Ch 16 Formation and Reactions of Ethers, Sulfides and Epoxides

Synthesis of Ethers and Sulfides

Williamsen ether synthesis

tosylate may be used instead of alkyl halide alkyl halide or tosylate must be 1° to avoid E2 products instead of NaH, Na (methyl or 1°) or K (2° or 3°) may be used

Alkoxymercuration-reduction

same as oxymercuration-reduction with an alcohol replacing water ether always goes to the more substituted side

Synthesis of sulfides

tosylate may be used instead of alkyl halide sulfides are poor bases, so 2° alkyl halides can be used without E2 products forming

Reactions of Ethers and Sulfides

Cleavage of ethers with HX

only works with HI and HBr symmetrical ethers form only one alkyl halide; unsymmetrical ethers form two aryl ethers give phenol instead of an aryl halide

Synthesis of Epoxides

Oxidation of alkenes with peroxyacid

alkene is oxidized and peroxyacid is reduced syn addition is observed PhCO₃H is often used because it is soluble in organic solvents MMPP is often used because the byproduct crystallizes out of solution

Cyclization of halohydrins

halohydrins are formed from alkenes and X_2 , H_2O the C with the halogen is inverted

Reactions of Epoxides

Ring opening by a strong Nu

Nu attacks the less substituted side the C that gets attacked is inverted

Ring opening by a weak Nu

Nu attacks the more substituted side

